C. U. SHAH UNIVERSITY Winter Examination-2022

Subject Name : Theories of Ring and Field

Subject Code : 5SC03TRF1		Branch: M.Sc. (Mathematics)	
Semester: 3	Date: 24/11/2022	Time: 11:00 To 02:00	Marks: 70

Instructions:

Q-1

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I Attempt the Following questions

(07)

		 a. Define: Ring. b. Define: Monic Polynomial. c. Give an example of division ring which is not field. d. How many ideals are in field? e. Define: Simple ring. f. Define: Radical of the ring. 	 (1) (1) (1) (1) (1)
		g. Define: Skew Field.	(1)
Q-2		Attempt all questions	(14)
c	А	If R is ring such that $a^2 = a$, $\forall a \in R$ prove that R is a commutative	(05)
		ring.	
	В	Prove that every field is an integral domain but converse is not true.	(05)
	С	Show that the set $I = \left\{ \begin{bmatrix} a & 0 \\ b & c \end{bmatrix} a, b, c \in R \right\}$ is a subring of $M_2(R)$.	(04)
		OR	
Q-2		Attempt all questions	(14)
	А	State and prove Division algorithm for polynomial ring.	(07)
	В	Define Field. Show that a field has no proper ideal. The converse is true always?	(05)
	С	Define Unique factorization domain.	(02)
Q-3		Attempt all questions	(14)
	А	State Eisenstein criterion theorem and check whether which of the following polynomial are irreducible over Q or not	(07)
		(i) $f(x) = 21x^3 - 3x^2 + 2x + 9$ (ii) $x^5 + 9x^4 + 12x^2 + 6$.	
	В	Let R be a commutative ring and let $a \in \mathbf{R}$. Then show that the set	(03)

 $I = \{x \in R | ax = 0\}$ is an ideal of R.

- C Show that the set $I = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} | a, b \in Z \right\}$ is not an ideal of $(M_2(Z), +, .)$. (04)
- **Q-3** A Let I_1 and I_2 be any ideals of a ring **R**. Then prove that $I_1 \cup I_2$ is an ideal (06) of **R** iff either $I_1 \subset I_2$ or $I_2 \subset I_1$.
 - B $(\mathbf{R}, +, \cdot)$ is ring then prove that for $\mathbf{a}, \mathbf{b} \in \mathbf{R}$. (04) (i) $\mathbf{a}\mathbf{0} = \mathbf{0}\mathbf{a} = \mathbf{0}$ (ii) $\mathbf{a}(-\mathbf{b}) = -(\mathbf{a}\mathbf{b}) = (-\mathbf{a})\mathbf{b}$
 - C Check whether the polynomial $x^3 + 2x + 2$ is reducible over Z_7 or not? (04)

SECTION – II

Attempt the Following questions Q-4 (07)a. Is a Polynomial ring always a field? (01)b. State: Division algorithm for ring polynomial. (01)c. Define: Irreducible polynomial over integral domain **D**. (01)d. The characteristic of ring $(Z_{2022}, +_{2022}, \times_{2022})$ is _____. (01)e. Define: Maximal ideal for ring. (01)f. Define: Algebraic extension over a field. (01)g. Define: Primitive polynomial (01)Q-5 Attempt all questions (14)State and prove first isomorphism theorem for rings. (07)А Define Integral domain and prove that every finite integral domain is В (07)field. OR 0-5 А (06)Let *R* be a commutative ring with unity and let $S \neq R$ be an Ideal of *R* Then prove that R/S is an Integral domain $\Leftrightarrow S$ is prime Ideal of R. В The principal ideal generated by two element**a** and **b** of an integral (05)domain are equal if and only *a* and *b* are associate. С Let **D** be an Integral domain a two non zero element $a, b \in D$ are (03)associate if and only if a/b and b/a. **Q-6** Attempt all questions (14)If $f(x) \otimes g(x)$ are two polynomials in F[x]; F is a field or an integral (07)А

- domain then prove that deg(f(x)g(x)) = degf(x) + deg g(x). Does the result holds if **F** is a commutative ring? Justify.
- B Show that $(\mathbf{Z}, +, .)$ is an Euclidean ring. (04)
- C \mathbb{K} be the extension field of \mathbb{F} let $a \in \mathbb{K}$ be algebraic over \mathbb{F} , let p(x) be a (03) minimal polynomial for a over \mathbb{F} then p(x) is irreducible over \mathbb{F} .

OR

Attempt all Questions

Q-6

- A Define kernel of ring homomorphism from ring \mathbf{R} to $\mathbf{R'}$ and prove that (04) $ker\emptyset = \{a \in \mathbf{R} | \emptyset(a) = \mathbf{0}\}$ is subring of \mathbf{R}
- B Let **F** be a field and $p(x) \in F(x)$, then $\langle p(x) \rangle$ is maximal ideal in F[x] (06) if and only if p(x) is irreducible over **F**.
- C Define; algebraic element and prove that \mathbb{K} be the extension field of \mathbb{F} let (04) $a \in \mathbb{K}$ be algebraic over \mathbb{F} then any two minimal polynomial for a over \mathbb{F} are equal.

